Abstract
Somatic mutations of the estrogen receptor 1 gene (ESR1) is an emerging mechanism of acquired resistance to endocrine therapy in hormonal breast cancers. Hotspot point mutations in the ligand- binding domain of estrogen receptor (ER) and genomic rearrangements producing ESR1 fusion genes are the two major types of mutations that are associated with endocrine resistance. The crosstalk between X-box binding protein 1 (XBP1), a key transcription factor of the unfolded protein response (UPR) and ER signalling creates a positive feedback loop that results in increased expression of XBP1 in ER-positive breast cancer. Here we report that XBP1 co-operated with point mutants (Y537S, D538G) and fusion mutants (ESR1-YAP1, ESR1-DAB2) of ESR1 to increase their transcriptional activity. XBP1 was required for optimal expression of estrogen-regulated genes, and up to 40% of XBP1-dependent genes were estrogen-responsive genes. Knockdown of XBP1 in genome-edited MCF7 cells expressing Y537S mutant reduced their growth, re-sensitized them to anti-estrogens and attenuated the constitutive and estrogen-stimulated expression of estrogen-regulated genes. Our study provides a rationale for overcoming endocrine resistance in breast cancers expressing ESR1 mutation by combining the XBP1 targeting agents with anti-estrogen agents.
| Original language | English (Ireland) |
|---|---|
| Article number | e05217 |
| Journal | Heliyon |
| Volume | 6 |
| Issue number | 10 |
| DOIs | |
| Publication status | Published - 1 Oct 2020 |
Keywords
- Biochemistry
- Cancer research
- Cell biology
- ER-Positive breast cancer
- ESR1 mutations
- Endocrine resistance
- Molecular biology
- Transcriptomics
- XBP1
Authors (Note for portal: view the doc link for the full list of authors)
- Authors
- Barua D;Abbasi B;Gupta A;Gupta S;
- Barua, D,Abbasi, B,Gupta, A,Gupta, S