Well-posedness results for a class of semilinear time-fractional diffusion equations

Bruno de Andrade, Vo Van Au, Donal O’Regan, Nguyen Huy Tuan

Research output: Contribution to a Journal (Peer & Non Peer)Articlepeer-review

18 Citations (Scopus)

Abstract

In this paper, we discuss an initial value problem for the semilinear time-fractional diffusion equation. The local well-posedness (existence and regularity) is presented when the source term satisfies a global Lipschitz condition. The unique continuation of solution and finite time blowup result are presented when the reaction terms are logarithmic functions (local Lipschitz types).

Original languageEnglish
Article number161
Number of pages0
JournalZeitschrift fur Angewandte Mathematik und Physik
Volume71
Issue number5
DOIs
Publication statusPublished - 1 Oct 2020

Keywords

  • Blowup
  • Fractional calculus
  • Nonlinear problem
  • Well-posedness

Authors (Note for portal: view the doc link for the full list of authors)

  • Authors
  • de Andrade, B;Au, VV;O'Regan, D;Tuan, NH

Fingerprint

Dive into the research topics of 'Well-posedness results for a class of semilinear time-fractional diffusion equations'. Together they form a unique fingerprint.

Cite this