TY - CHAP
T1 - PerfectO
T2 - An Online Toolkit for Improving Quality, Accessibility, and Classification of Domain-Based Ontologies
AU - Gyrard, Amélie
AU - Atemezing, Ghislain
AU - Serrano, Martin
N1 - Publisher Copyright:
© 2021, Springer Nature Switzerland AG.
PY - 2021
Y1 - 2021
N2 - Sensor-based applications are increasingly present in our everyday life. Due to the enormous quantity of sensor data produced, interpreting data and building interoperable sensor-based applications is needed. There are several problems to address the heterogeneity of (1) data format, (2) languages to describe sensor metadata, (3) models for structuring sensor datasets, (4) reasoning mechanisms and rule languages to interpret sensor datasets, and (5) applications. Semantic Web technologies (a.k.a, knowledge graphs), are immersed in an increasing number of online activities we perform today (e.g., search engines for gathering information). There is a need to find better ways to share data and distribute more meaningful and more accurate information. Innovative methodologies are needed to link and associate the data from different domains to improve knowledge discovery. Semantic knowledge graphs, made of datasets and ontologies, are intended to describe and organize heterogeneous data explicitly. If an ontology is widely used to structure data of a particular domain, the accessibility and the efficiency in sharing and reusing that information will increase. For this reason, we focused on the ontology quality used when building sensor-based applications. We designed PerfectO, a Knowledge Directory Services tool, focusing on ontology best practices, which: (1) improves knowledge quality, (2) leverages usability, accessibility, and classification of the information, (3) enhances engineering experience, and (4) promotes engineering best practices. PerfectO implementation is applied to the Internet of Things (IoT) domain because it covers more than 20 application domains (e.g., healthcare, smart building, smart farm) that use sensors. PerfectO enhances knowledge expertise quality implemented within any ontologies as demonstrated with the Linked Open Vocabularies for IoT (LOV4IoT) ontology catalog.
AB - Sensor-based applications are increasingly present in our everyday life. Due to the enormous quantity of sensor data produced, interpreting data and building interoperable sensor-based applications is needed. There are several problems to address the heterogeneity of (1) data format, (2) languages to describe sensor metadata, (3) models for structuring sensor datasets, (4) reasoning mechanisms and rule languages to interpret sensor datasets, and (5) applications. Semantic Web technologies (a.k.a, knowledge graphs), are immersed in an increasing number of online activities we perform today (e.g., search engines for gathering information). There is a need to find better ways to share data and distribute more meaningful and more accurate information. Innovative methodologies are needed to link and associate the data from different domains to improve knowledge discovery. Semantic knowledge graphs, made of datasets and ontologies, are intended to describe and organize heterogeneous data explicitly. If an ontology is widely used to structure data of a particular domain, the accessibility and the efficiency in sharing and reusing that information will increase. For this reason, we focused on the ontology quality used when building sensor-based applications. We designed PerfectO, a Knowledge Directory Services tool, focusing on ontology best practices, which: (1) improves knowledge quality, (2) leverages usability, accessibility, and classification of the information, (3) enhances engineering experience, and (4) promotes engineering best practices. PerfectO implementation is applied to the Internet of Things (IoT) domain because it covers more than 20 application domains (e.g., healthcare, smart building, smart farm) that use sensors. PerfectO enhances knowledge expertise quality implemented within any ontologies as demonstrated with the Linked Open Vocabularies for IoT (LOV4IoT) ontology catalog.
KW - Internet of things
KW - Knowledge directory
KW - Knowledge directory service
KW - Methodology
KW - Ontology quality
KW - Semantic data interoperability
KW - Semantic web of things
KW - Semantic web technologies
KW - Web of things
UR - https://www.scopus.com/pages/publications/85104359035
U2 - 10.1007/978-3-030-64619-6_7
DO - 10.1007/978-3-030-64619-6_7
M3 - Chapter
AN - SCOPUS:85104359035
T3 - Studies in Computational Intelligence
SP - 161
EP - 192
BT - Studies in Computational Intelligence
PB - Springer Science and Business Media Deutschland GmbH
ER -