TY - GEN
T1 - Patient-Specific Debye Parameters for Human Blood
AU - Santorelli, Adam
AU - O'Halloran, Martin
N1 - Publisher Copyright:
© 2019 IEEE.
PY - 2019/7
Y1 - 2019/7
N2 - This paper develops a patient-specific model for the Debye parameters of human blood based on hemoglobin content. Blood samples were collected from 176 patients visiting the University Hospital, with both permittivity measurements and standard hematological analysis performed on each blood draw. The complete blood count of each sample provided information on the hemoglobin concentration of each sample; in total there were 73 distinct hemoglobin concentrations reported. An iterative process was used to find patient-specific, based on hemoglobin content, Debye parameters. First, a two-stage genetic algorithm was used to solve for the parameters of a two-pole Debye model based on the mean-blood properties. Then, a modified two-pole Debye model incorporating hemoglobin information was developed, and those parameters were solved for using the same two-stage genetic algorithm. This paper presents the parameters for both the mean-blood model and the patient-specific model. The patient-specific model has a mean-fractional error across all 73 samples of 3.41% compared to 7.64% when using the mean-blood model to represent the entire population. This work demonstrates the range in the dielectric properties of human blood samples and highlights the need for incorporating patient-specific information when using the Debye parameters to model the dielectric properties of human blood.
AB - This paper develops a patient-specific model for the Debye parameters of human blood based on hemoglobin content. Blood samples were collected from 176 patients visiting the University Hospital, with both permittivity measurements and standard hematological analysis performed on each blood draw. The complete blood count of each sample provided information on the hemoglobin concentration of each sample; in total there were 73 distinct hemoglobin concentrations reported. An iterative process was used to find patient-specific, based on hemoglobin content, Debye parameters. First, a two-stage genetic algorithm was used to solve for the parameters of a two-pole Debye model based on the mean-blood properties. Then, a modified two-pole Debye model incorporating hemoglobin information was developed, and those parameters were solved for using the same two-stage genetic algorithm. This paper presents the parameters for both the mean-blood model and the patient-specific model. The patient-specific model has a mean-fractional error across all 73 samples of 3.41% compared to 7.64% when using the mean-blood model to represent the entire population. This work demonstrates the range in the dielectric properties of human blood samples and highlights the need for incorporating patient-specific information when using the Debye parameters to model the dielectric properties of human blood.
UR - http://www.scopus.com/inward/record.url?scp=85077888604&partnerID=8YFLogxK
U2 - 10.1109/EMBC.2019.8856388
DO - 10.1109/EMBC.2019.8856388
M3 - Conference Publication
T3 - Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
SP - 238
EP - 242
BT - 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2019
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2019
Y2 - 23 July 2019 through 27 July 2019
ER -