TY - JOUR
T1 - Oxidation of norbornadiene
T2 - Theoretical investigation on H-atom abstraction and related radical decomposition reactions
AU - Chen, Jintao
AU - Liu, Mingxia
AU - Zhu, Yuxiang
AU - Jin, Kairu
AU - Tian, Zhenyu
AU - Yang, Lijun
AU - Zhou, Chong Wen
N1 - Publisher Copyright:
© 2023 The Authors
PY - 2023/3
Y1 - 2023/3
N2 - The chemical kinetics of hydrogen atom (H-atom) abstraction reactions from norbornadiene (NBD) by five radicals (H, O(3P), OH, CH3, and HO2), and the unimolecular reactions of three NBD derived radicals, were studied through high-level ab-initio calculations. The geometries optimization and vibrational frequencies calculation for all the reactants, transition states, and products were obtained at the M06-2X/6-311++G(d,p) level of theory. The zero-point energy (ZPE) corrected potential energy surfaces (PESs) were determined at the QCISD(T)/cc-pVDZ, TZ level of theory with basis set corrections from MP2/cc-pVDZ, TZ, QZ methods for single point energy calculations. Conventional transition state theory (TST) was used for the rate constants calculations of H-atom abstraction reactions by five radicals (H, O(3P), OH, CH3, and HO2) at temperatures from 298.15 to 2000 K, while the α-site H-atom abstraction reaction rate constant of NBD by OH radical has been obtained through variational transition state theory (VTST). The results show that the H-atom abstraction reactions from the α-carbon atom of NBD are the most critical channels at low temperatures. Total rate constants for H-atom abstraction reactions by OH radical are also the fastest among all of the reaction channels investigated at the temperature range from 298.15 to 2000 K. Rice-Ramsperger-Kassel-Marcus/Master Equation (RRKM/ME) has been used to calculate the pressure- and temperature-dependent rate constants for the unimolecular reactions of three related C7H7 product radicals which generated from H-atom abstraction reaction within temperature ranges of 300–2000 K and pressures of 0.01–100 atm. A combination of composite methods has been used to calculate the temperature-dependent thermochemical properties of NBD and related radicals. All the calculated kinetics and thermochemistry data can be utilized in the model development for NBD oxidation.
AB - The chemical kinetics of hydrogen atom (H-atom) abstraction reactions from norbornadiene (NBD) by five radicals (H, O(3P), OH, CH3, and HO2), and the unimolecular reactions of three NBD derived radicals, were studied through high-level ab-initio calculations. The geometries optimization and vibrational frequencies calculation for all the reactants, transition states, and products were obtained at the M06-2X/6-311++G(d,p) level of theory. The zero-point energy (ZPE) corrected potential energy surfaces (PESs) were determined at the QCISD(T)/cc-pVDZ, TZ level of theory with basis set corrections from MP2/cc-pVDZ, TZ, QZ methods for single point energy calculations. Conventional transition state theory (TST) was used for the rate constants calculations of H-atom abstraction reactions by five radicals (H, O(3P), OH, CH3, and HO2) at temperatures from 298.15 to 2000 K, while the α-site H-atom abstraction reaction rate constant of NBD by OH radical has been obtained through variational transition state theory (VTST). The results show that the H-atom abstraction reactions from the α-carbon atom of NBD are the most critical channels at low temperatures. Total rate constants for H-atom abstraction reactions by OH radical are also the fastest among all of the reaction channels investigated at the temperature range from 298.15 to 2000 K. Rice-Ramsperger-Kassel-Marcus/Master Equation (RRKM/ME) has been used to calculate the pressure- and temperature-dependent rate constants for the unimolecular reactions of three related C7H7 product radicals which generated from H-atom abstraction reaction within temperature ranges of 300–2000 K and pressures of 0.01–100 atm. A combination of composite methods has been used to calculate the temperature-dependent thermochemical properties of NBD and related radicals. All the calculated kinetics and thermochemistry data can be utilized in the model development for NBD oxidation.
KW - Ab-initio calculations
KW - Kinetic
KW - Norbornadiene
KW - Rate constants
KW - Thermochemistry
UR - http://www.scopus.com/inward/record.url?scp=85150305319&partnerID=8YFLogxK
U2 - 10.1016/j.jppr.2023.02.001
DO - 10.1016/j.jppr.2023.02.001
M3 - Article
AN - SCOPUS:85150305319
SN - 2212-540X
VL - 12
SP - 104
EP - 113
JO - Propulsion and Power Research
JF - Propulsion and Power Research
IS - 1
ER -