Nonlinear Ultrasound Propagation in Homogeneous and Heterogeneous Media: Factors Affecting the in situ Mechanical Index (MI)

Bofeng Zhang, Gianmarco Pinton, Yufeng Deng, Bharat Tripathi, Kathryn Nightingale

Research output: Chapter in Book or Conference Publication/ProceedingConference Publicationpeer-review

5 Citations (Scopus)

Abstract

This study used 3D nonlinear ultrasound simulations to identify the sources of error when estimating the in situ Peak Rarefaction Pressure (PRP) as compared to linear derating in the context of the Mechanical Index (MI) measurement. We found that varying material nonlinearity within the range of soft tissue (5 < B/A < 10) does not affect PRP estimation. We also found that for large apertures (F/1.5), phase aberration is the dominant factor that causes the linear derating MI method to consistently report higher PRP than actually occurs in situ. For smaller apertures (F/5), both phase aberration and reverberation clutter cause the linear derating MI method to report lower PRP than actually occurs in situ.

Original languageEnglish
Title of host publication2017 IEEE International Ultrasonics Symposium, IUS 2017
PublisherIEEE Computer Society
ISBN (Electronic)9781538633830
DOIs
Publication statusPublished - 31 Oct 2017
Externally publishedYes
Event2017 IEEE International Ultrasonics Symposium, IUS 2017 - Washington, United States
Duration: 6 Sep 20179 Sep 2017

Publication series

NameIEEE International Ultrasonics Symposium, IUS
ISSN (Print)1948-5719
ISSN (Electronic)1948-5727

Conference

Conference2017 IEEE International Ultrasonics Symposium, IUS 2017
Country/TerritoryUnited States
CityWashington
Period6/09/179/09/17

Fingerprint

Dive into the research topics of 'Nonlinear Ultrasound Propagation in Homogeneous and Heterogeneous Media: Factors Affecting the in situ Mechanical Index (MI)'. Together they form a unique fingerprint.

Cite this