TY - JOUR
T1 - Molecular dynamics simulation of protein biosurfactants
AU - Cheung, David L.
AU - Samantray, Suman
N1 - Publisher Copyright:
© 2018 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2018/9
Y1 - 2018/9
N2 - Surfaces and interfaces are ubiquitous in nature and are involved in many biological processes. Due to this, natural organisms have evolved a number of methods to control interfacial and surface properties. Many of these methods involve the use of specialised protein biosurfactants, which due to the competing demands of high surface activity, biocompatibility, and low solution aggregation may take structures that differ from the traditional head–tail structure of small molecule surfactants. As well as their biological functions, these proteins have also attracted interest for industrial applications, in areas including food technology, surface modification, and drug delivery. To understand the biological functions and technological applications of protein biosurfactants, it is necessary to have a molecular level description of their behaviour, in particular at surfaces and interfaces, for which molecular simulation is well suited to investigate. In this review, we will give an overview of simulation studies of a number of examples of protein biosurfactants (hydrophobins, surfactin, and ranaspumin). We will also outline some of the key challenges and future directions for molecular simulation in the investigation of protein biosurfactants and how this can help guide future developments.
AB - Surfaces and interfaces are ubiquitous in nature and are involved in many biological processes. Due to this, natural organisms have evolved a number of methods to control interfacial and surface properties. Many of these methods involve the use of specialised protein biosurfactants, which due to the competing demands of high surface activity, biocompatibility, and low solution aggregation may take structures that differ from the traditional head–tail structure of small molecule surfactants. As well as their biological functions, these proteins have also attracted interest for industrial applications, in areas including food technology, surface modification, and drug delivery. To understand the biological functions and technological applications of protein biosurfactants, it is necessary to have a molecular level description of their behaviour, in particular at surfaces and interfaces, for which molecular simulation is well suited to investigate. In this review, we will give an overview of simulation studies of a number of examples of protein biosurfactants (hydrophobins, surfactin, and ranaspumin). We will also outline some of the key challenges and future directions for molecular simulation in the investigation of protein biosurfactants and how this can help guide future developments.
KW - Biosurfactants
KW - Interfacial science
KW - Molecular dynamics simulation
KW - Protein structure
UR - https://www.scopus.com/pages/publications/85062264452
U2 - 10.3390/colloids2030039
DO - 10.3390/colloids2030039
M3 - Review article
AN - SCOPUS:85062264452
SN - 2504-5377
VL - 2
JO - Colloids and Interfaces
JF - Colloids and Interfaces
IS - 3
M1 - 39
ER -