Mechanical stress and the induction of lung fibrosis via the midkine signaling pathway

Rong Zhang, Ying Pan, Vito Fanelli, Sulong Wu, Alice Aili Luo, Diana Islam, Bing Han, Pu Mao, Mirna Ghazarian, Wenmei Zeng, Peter M. Spieth, Dingyan Wang, Julie Khang, Hongyin Mo, Xiaoqing Liu, Stefan Uhlig, Mingyao Liu, John Laffey, Arthur S. Slutsky, Yimin LiHaibo Zhang

Research output: Contribution to a Journal (Peer & Non Peer)Articlepeer-review

110 Citations (Scopus)

Abstract

Rationale: Lung-protective ventilatory strategies have been widely used in patients with acute respiratory distress syndrome (ARDS), but the ARDS mortality rate remains unacceptably high and there is no proven pharmacologic therapy. Objectives: Mechanical ventilation can induce oxidative stress and lung fibrosis, which may contribute to high dependency on ventilator support and increased ARDSmortality. We hypothesized that the novel cytokine, midkine (MK), which can be up-regulated in oxidative stress, plays a key role in the pathogenesis of ARDS-associated lung fibrosis. Methods: Blood sampleswere collected from 17 patients withARDSand 10 healthy donors.Human lung epithelial cells were challenged with hydrogen chloride followed by mechanical stretch for 72 hours.Wild-type andMK gene-deficient (MK-/-) mice received two-hit injury of acid aspiration and mechanical ventilation, and were monitored for 14 days. Measurements and Main Results: Plasma concentrations of MK were higher in patients with ARDS than in healthy volunteers. Exposure to mechanical stretch of lung epithelial cells led to an epithelial-mesenchymal transition profile associated with increased expression of angiotensin-converting enzyme, which was attenuated by silencing MK, its receptor Notch2, or NADP reduced oxidase 1. An increase in collagen deposition and hydroxyproline level and a decrease in lung tissue compliance seen in wild-type mice were largely attenuated in MK-/- mice. Conclusions: Mechanical stretch can induce an epithelial-mesenchymal transition phenotype mediated by the MK-Notch2-angiotensin-converting enzyme signaling pathway, contributing to lung remodeling. The MK pathway is a potential therapeutic target in the context of ARDS-associated lung fibrosis.

Original languageEnglish
Pages (from-to)315-323
Number of pages9
JournalAmerican Journal of Respiratory and Critical Care Medicine
Volume192
Issue number3
DOIs
Publication statusPublished - 1 Aug 2015
Externally publishedYes

Keywords

  • Angiotensinconverting enzyme
  • Lung injury
  • Mechanical ventilation

Fingerprint

Dive into the research topics of 'Mechanical stress and the induction of lung fibrosis via the midkine signaling pathway'. Together they form a unique fingerprint.

Cite this