TY - JOUR
T1 - Mechanical characterization of brain tissue in tension at dynamic strain rates
AU - Rashid, Badar
AU - Destrade, Michel
AU - Gilchrist, Michael D.
PY - 2014/5
Y1 - 2014/5
N2 - Mechanical characterization of brain tissue at high loading velocities is crucial for modeling Traumatic Brain Injury (TBI). During severe impact conditions, brain tissue experiences compression, tension and shear. Limited experimental data is available for brain tissue in extension at dynamic strain rates. In this research, a High Rate Tension Device (HRTD) was developed to obtain dynamic properties of brain tissue in extension at strain rates of ≤90/s. In vitro tensile tests were performed to obtain properties of brain tissue at strain rates of 30, 60 and 90/s up to 30% strain. The brain tissue showed a stiffer response with increasing strain rates, showing that hyperelastic models are not adequate. Specifically, the tensile engineering stress at 30% strain was 3.1±0.49. kPa, 4.3±0.86. kPa, 6.5±0.76. kPa (mean±SD) at strain rates of 30, 60 and 90/s, respectively. Force relaxation tests in tension were also conducted at different strain magnitudes (10-60% strain) with the average rise time of 24. ms, which were used to derive time dependent parameters. One-term Ogden, Fung and Gent models were used to obtain material parameters from the experimental data. Numerical simulations were performed using a one-term Ogden model to analyze hyperelastic behavior of brain tissue up to 30% strain. The material parameters obtained in this study will help to develop biofidelic human brain finite element models, which can subsequently be used to predict brain injuries under impact conditions and as a reconstruction and simulation tool for forensic investigations.
AB - Mechanical characterization of brain tissue at high loading velocities is crucial for modeling Traumatic Brain Injury (TBI). During severe impact conditions, brain tissue experiences compression, tension and shear. Limited experimental data is available for brain tissue in extension at dynamic strain rates. In this research, a High Rate Tension Device (HRTD) was developed to obtain dynamic properties of brain tissue in extension at strain rates of ≤90/s. In vitro tensile tests were performed to obtain properties of brain tissue at strain rates of 30, 60 and 90/s up to 30% strain. The brain tissue showed a stiffer response with increasing strain rates, showing that hyperelastic models are not adequate. Specifically, the tensile engineering stress at 30% strain was 3.1±0.49. kPa, 4.3±0.86. kPa, 6.5±0.76. kPa (mean±SD) at strain rates of 30, 60 and 90/s, respectively. Force relaxation tests in tension were also conducted at different strain magnitudes (10-60% strain) with the average rise time of 24. ms, which were used to derive time dependent parameters. One-term Ogden, Fung and Gent models were used to obtain material parameters from the experimental data. Numerical simulations were performed using a one-term Ogden model to analyze hyperelastic behavior of brain tissue up to 30% strain. The material parameters obtained in this study will help to develop biofidelic human brain finite element models, which can subsequently be used to predict brain injuries under impact conditions and as a reconstruction and simulation tool for forensic investigations.
KW - Axonal
KW - Dynamic
KW - Impact
KW - Ogden
KW - TBI
KW - Traumatic brain injury
UR - http://www.scopus.com/inward/record.url?scp=84894716476&partnerID=8YFLogxK
U2 - 10.1016/j.jmbbm.2012.07.015
DO - 10.1016/j.jmbbm.2012.07.015
M3 - Article
SN - 1751-6161
VL - 33
SP - 43
EP - 54
JO - Journal of the Mechanical Behavior of Biomedical Materials
JF - Journal of the Mechanical Behavior of Biomedical Materials
IS - 1
ER -