IRIS: English-Irish machine translation system

Mihael Arcan, Caoilfhionn Lane, Eoin Droighneáin, Paul Buitelaar

Research output: Chapter in Book or Conference Publication/ProceedingConference Publicationpeer-review

2 Citations (Scopus)

Abstract

We describe IRIS, a statistical machine translation (SMT) system for translating from English into Irish and vice versa. Since Irish is considered an under-resourced language with a limited amount of machine-readable text, building a machine translation system that produces reasonable translations is rather challenging. As translation is a difficult task, current research in SMT focuses on obtaining statistics either from a large amount of parallel, monolingual or other multilingual resources. Nevertheless, we collected available English-Irish data and developed an SMT system aimed at supporting human translators and enabling cross-lingual language technology tasks.

Original languageEnglish
Title of host publicationProceedings of the 10th International Conference on Language Resources and Evaluation, LREC 2016
EditorsNicoletta Calzolari, Khalid Choukri, Helene Mazo, Asuncion Moreno, Thierry Declerck, Sara Goggi, Marko Grobelnik, Jan Odijk, Stelios Piperidis, Bente Maegaard, Joseph Mariani
PublisherEuropean Language Resources Association (ELRA)
Pages566-572
Number of pages7
ISBN (Electronic)9782951740891
Publication statusPublished - 2016
Externally publishedYes
Event10th International Conference on Language Resources and Evaluation, LREC 2016 - Portoroz, Slovenia
Duration: 23 May 201628 May 2016

Publication series

NameProceedings of the 10th International Conference on Language Resources and Evaluation, LREC 2016

Conference

Conference10th International Conference on Language Resources and Evaluation, LREC 2016
Country/TerritorySlovenia
CityPortoroz
Period23/05/1628/05/16

Keywords

  • Irish language
  • Statistical machine translation
  • Under-resourced languages

Fingerprint

Dive into the research topics of 'IRIS: English-Irish machine translation system'. Together they form a unique fingerprint.

Cite this