In vitro characterization of PrismaLung+: a novel ECCO2R device: a novel ECCO2R device

Research output: Contribution to a Journal (Peer & Non Peer)Articlepeer-review

15 Citations (Scopus)

Abstract

Background Invasive mechanical ventilation is lifesaving in the setting of severe acute respiratory failure but can cause ventilation-induced lung injury. Advances in extracorporeal CO2 removal (ECCO2R) technologies may facilitate more protective lung ventilation in acute respiratory distress syndrome, and enable earlier weaning and or avoid invasive mechanical ventilation entirely in chronic obstructive pulmonary disease exacerbations. We evaluated the in vitro CO2 removal capacity of the novel PrismaLung+ ECCO2R device compared with two existing gas exchangers. Methods The in vitro CO2 removal capacity of the PrismaLung+ (surface area 0.8 m(2), Baxter) was compared with the PrismaLung (surface area 0.35 m(2), Baxter) and A.L.ONE (surface area 1.35 m(2), Eurosets) devices, using a closed-loop bovine blood-perfused extracorporeal circuit. The efficacy of each device was measured at varying pCO(2) inlet (p(in)CO(2)) levels (45, 60, and 80 mmHg) and blood flow rates (Q(B)) of 200-450 mL min; the PrismaLung+ and A.L.ONE devices were also tested at a Q(B) of 600 mL min. The amount of CO2 removed by each device was assessed by measurement of the CO2 infused to maintain circuit equilibrium (CO2 infusion method) and compared with measured CO2 concentrations in the inlet and outlet of the CO2 removal device (blood gas analysis method). Results The PrismaLung+ device performed similarly to the A.L.ONE device, with both devices demonstrating CO2 removal rates similar to 50% greater than the PrismaLung device. CO2 removal rates were 73 + - 4.0, 44 + - 2.5, and 72 + - 1.9 mL min, for PrismaLung+, PrismaLung, and A.L.ONE, respectively, at Q(B) 300 mL min and p(in)CO(2) 45 mmHg. A Bland-Altman plot demonstrated that the CO2 infusion method was comparable to the blood gas analysis method for calculating CO2 removal. The resistance to blood flow across the test device, as measured by pressure drop, varied as a function of blood flow rate, and was greatest for PrismaLung and lowest for the A.L.ONE device. Conclusions The newly developed PrismaLung+ performed more effectively than PrismaLung, with performance of CO2 removal comparable to A.L.ONE at the flow rates tested, despite the smaller membrane surface area of PrismaLung+ versus A.L.ONE. Clinical testing of PrismaLung+ is warranted to further characterize its performance.
Original languageEnglish (Ireland)
Article number14
JournalIntensive Care Medicine Experimental
Volume8
Issue number1
DOIs
Publication statusPublished - 1 May 2020

Keywords

  • Acute respiratory distress syndrome (ARDS)
  • CO removal
  • Chronic obstructive pulmonary disease (COPD)
  • Extracorporeal CO removal (ECCOR)
  • Gas exchange
  • Hypercapnic respiratory failure
  • Lung protective ventilation
  • Mechanical ventilation
  • Tidal volume

Authors (Note for portal: view the doc link for the full list of authors)

  • Authors
  • Hospach, I,Goldstein, J,Harenski, K,Laffey, JG,Pouchoulin, D,Raible, M,Votteler, S,Storr, M

Fingerprint

Dive into the research topics of 'In vitro characterization of PrismaLung+: a novel ECCO2R device: a novel ECCO2R device'. Together they form a unique fingerprint.

Cite this