Global Mittag-Leffler synchronization for neural networks modeled by impulsive caputo fractional differential equations with distributed delays

Ravi Agarwal, Snezhana Hristova, Donal O'Regan

Research output: Contribution to a Journal (Peer & Non Peer)Articlepeer-review

13 Citations (Scopus)

Abstract

The synchronization problem for impulsive fractional-order neural networks with both time-varying bounded and distributed delays is studied. We study the case when the neural networks and the fractional derivatives of all neurons depend significantly on the moments of impulses and we consider both the cases of state coupling controllers and output coupling controllers. The fractional generalization of the Razumikhin method and Lyapunov functions is applied. Initially, a brief overview of the basic fractional derivatives of Lyapunov functions used in the literature is given. Some sufficient conditions are derived to realize the global Mittag-Leffler synchronization of impulsive fractional-order neural networks. Our results are illustrated with examples.

Original languageEnglish
Article number473
JournalSymmetry
Volume10
Issue number10
DOIs
Publication statusPublished - 2018

Keywords

  • Delays
  • Distributed delays
  • Fractional-order neural networks
  • Impulses
  • Lyapunov functions
  • Mittag-Leffler synchronization
  • Razumikhin method

Fingerprint

Dive into the research topics of 'Global Mittag-Leffler synchronization for neural networks modeled by impulsive caputo fractional differential equations with distributed delays'. Together they form a unique fingerprint.

Cite this