Fluid flow in the osteocyte mechanical environment: a fluid-structure interaction approach. A fluid-structure interaction approach

Research output: Contribution to a Journal (Peer & Non Peer)Articlepeer-review

149 Citations (Scopus)

Abstract

Osteocytes are believed to be the primary sensor of mechanical stimuli in bone, which orchestrate osteoblasts and osteoclasts to adapt bone structure and composition to meet physiological loading demands. Experimental studies to quantify the mechanical environment surrounding bone cells are challenging, and as such, computational and theoretical approaches have modelled either the solid or fluid environment of osteocytes to predict how these cells are stimulated in vivo. Osteocytes are an elastic cellular structure that deforms in response to the external fluid flow imposed by mechanical loading. This represents a most challenging multi-physics problem in which fluid and solid domains interact, and as such, no previous study has accounted for this complex behaviour. The objective of this study is to employ fluid-structure interaction (FSI) modelling to investigate the complex mechanical environment of osteocytes in vivo. Fluorescent staining of osteocytes was performed in order to visualise their native environment and develop geometrically accurate models of the osteocyte in vivo. By simulating loading levels representative of vigorous physiological activity ([Formula: see text] compression and 300 Pa pressure gradient), we predict average interstitial fluid velocities [Formula: see text] and average maximum shear stresses [Formula: see text] surrounding osteocytes in vivo. Interestingly, these values occur in the canaliculi around the osteocyte cell processes and are within the range of stimuli known to stimulate osteogenic responses by osteoblastic cells in vitro. Significantly our results suggest that the greatest mechanical stimulation of the osteocyte occurs in the cell processes, which, cell culture studies have indicated, is the most mechanosensitive area of the cell. These are the first computational FSI models to simulate the complex multi-physics mechanical environment of osteocyte in vivo and provide a deeper understanding of bone mechanobiology.
Original languageEnglish (Ireland)
Pages (from-to)85-97
Number of pages13
JournalBiomech Model Mechanobiol
Volume13
Issue number1
DOIs
Publication statusPublished - 1 Apr 2013

Keywords

  • Bone
  • Fluid-structure interaction
  • Lacuna
  • Mechanobiology
  • Osteocyte
  • Shear stress

Authors (Note for portal: view the doc link for the full list of authors)

  • Authors
  • Verbruggen SW, Vaughan TJ, McNamara LM

Fingerprint

Dive into the research topics of 'Fluid flow in the osteocyte mechanical environment: a fluid-structure interaction approach. A fluid-structure interaction approach'. Together they form a unique fingerprint.

Cite this