Fixed point theorems for generalized contractions in ordered metric spaces

Donal O'Regan, Adrian Petruşel

Research output: Contribution to a Journal (Peer & Non Peer)Articlepeer-review

301 Citations (Scopus)

Abstract

The purpose of this paper is to present some fixed point results for self-generalized contractions in ordered metric spaces. Our results generalize and extend some recent results of A.C.M. Ran, M.C. Reurings [A.C.M. Ran, M.C. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. 132 (2004) 1435-1443], J.J. Nieto, R. Rodríguez-López [J.J. Nieto, R. Rodríguez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order 22 (2005) 223-239; J.J. Nieto, R. Rodríguez-López, Existence and uniqueness of fixed points in partially ordered sets and applications to ordinary differential equations, Acta Math. Sin. (Engl. Ser.) 23 (2007) 2205-2212], J.J. Nieto, R.L. Pouso, R. Rodríguez-López [J.J. Nieto, R.L. Pouso, R. Rodríguez-López, Fixed point theorem theorems in ordered abstract sets, Proc. Amer. Math. Soc. 135 (2007) 2505-2517], A. Petruşel, I.A. Rus [A. Petruşel, I.A. Rus, Fixed point theorems in ordered L-spaces, Proc. Amer. Math. Soc. 134 (2006) 411-418] and R.P. Agarwal, M.A. El-Gebeily, D. O'Regan [R.P. Agarwal, M.A. El-Gebeily, D. O'Regan, Generalized contractions in partially ordered metric spaces, Appl. Anal., in press]. As applications, existence and uniqueness results for Fredholm and Volterra type integral equations are given.

Original languageEnglish
Pages (from-to)1241-1252
Number of pages12
JournalJournal of Mathematical Analysis and Applications
Volume341
Issue number2
DOIs
Publication statusPublished - 15 May 2008

Keywords

  • Fixed point
  • Generalized contraction
  • Integral equation
  • Monotone operator
  • Ordered metric space

Authors (Note for portal: view the doc link for the full list of authors)

  • Authors
  • O'Regan, D;Petrusel, A

Fingerprint

Dive into the research topics of 'Fixed point theorems for generalized contractions in ordered metric spaces'. Together they form a unique fingerprint.

Cite this