Abstract
BACKGROUND: Cardiovascular diseases (CVD) account for 36% of deaths in Europe and the United States. Gene therapy can act as a therapeutic modality for the treatment of CVD. The use of microRNA mimetics may be advantageous as they regulate important processes in health and pathology. A major hurdle for using miRNA therapies relates to site specific delivery and sufficient cellular uptake of material to achieve efficacy OBJECTIVE: To assess the feasibility of ultrasound responsive microbubble mediated delivery of miR mimics to cardiomyocytes. METHODS: Liposome/microbubble formulations were added to HL-1 cardiomyocytes in the presence/absence of ultrasound (US). Transfection efficacy and functionality was assessed using epifluorescent microscopy, flow cytometry and qRT-PCR. DNA Quantification post-ultrasound mediated transfection of HL-1s using microbubbles was quantified. The capability of miR-133 microbubble formulations to suppress hypertrophy were measured by quantifying changes in cell size. RESULTS: Ultrasound mediated microbubble formulations enhanced intracellular delivery of miR mimics in cardiomyocytes. Both complexed/encapsulated miR-microbubble formulations delivered functional miR mimics and showed no adverse effect on cardiomyocyte viability. Furthermore, ultrasound mediated microbubble transfection of miR-133 mimics reversed cardiomyocyte hypertrophy in an in-vitro model. CONCLUSIONS: This novel delivery method has the potential for further development as a targeted delivery strategy for miR therapeutics to the heart.
| Original language | English |
|---|---|
| Pages (from-to) | 37-51 |
| Number of pages | 15 |
| Journal | Technology and Health Care |
| Volume | 22 |
| Issue number | 1 |
| DOIs | |
| Publication status | Published - 2014 |
| Externally published | Yes |
Keywords
- cardiomyocytes
- heart failure
- microRNA
- microbubbles
- ultrasound