TY - JOUR
T1 - Eco-engineered rock pools
T2 - A concrete solution to biodiversity loss and urban sprawl in the marine environment
AU - Firth, Louise B.
AU - Browne, Keith A.
AU - Knights, Antony M.
AU - Hawkins, Stephen J.
AU - Nash, Róisín
N1 - Publisher Copyright:
© 2016 IOP Publishing Ltd.
PY - 2016/9/14
Y1 - 2016/9/14
N2 - In coastal habitats artificial structures typically support lower biodiversity and can support greater numbers of non-native and opportunistic species than natural rocky reefs. Eco-engineering experiments are typically trialed to succeed; but arguably as much is learnt from failure than from success. Our goal was to trial a generic, cost effective, eco-engineering technique that could be incorporated into rock armouring anywhere in the world. Artificial rock pools were created from manipulated concrete between boulders on the exposed and sheltered sides of a causeway. Experimental treatments were installed in locations where they were expected to fail and compared to controls installed in locations in which they were expected to succeed. Control pools were created lower on the structure where they were immersed on every tidal cycle; experimental pools were created above mean high water spring tide which were only immersed on spring tides. We hypothesised that lower and exposed pools would support significantly higher taxon and functional diversity than upper and sheltered pools. The concrete pools survived the severe winter storms of 2013/14. After 12 months, non-destructive sampling revealed significantly higher mean taxon and functional richness in lower pools than upper pools on the exposed side only. After 24 months the sheltered pools had become inundated with sediments, thus failing to function as rock pools as intended. Destructive sampling on the exposed side revealed significantly higher mean functional richness in lower than upper pools. However, a surprisingly high number of taxa colonised the upper pools leading to no significant difference in mean taxon richness among shore heights. A high number of rare taxa in the lower pools led to total taxon richness being almost twice that of upper pools. These findings highlight that even when expected to fail concrete pools supported diverse assemblages, thus representing an affordable, replicable means of enhancing biodiversity on a variety of artificial structures.
AB - In coastal habitats artificial structures typically support lower biodiversity and can support greater numbers of non-native and opportunistic species than natural rocky reefs. Eco-engineering experiments are typically trialed to succeed; but arguably as much is learnt from failure than from success. Our goal was to trial a generic, cost effective, eco-engineering technique that could be incorporated into rock armouring anywhere in the world. Artificial rock pools were created from manipulated concrete between boulders on the exposed and sheltered sides of a causeway. Experimental treatments were installed in locations where they were expected to fail and compared to controls installed in locations in which they were expected to succeed. Control pools were created lower on the structure where they were immersed on every tidal cycle; experimental pools were created above mean high water spring tide which were only immersed on spring tides. We hypothesised that lower and exposed pools would support significantly higher taxon and functional diversity than upper and sheltered pools. The concrete pools survived the severe winter storms of 2013/14. After 12 months, non-destructive sampling revealed significantly higher mean taxon and functional richness in lower pools than upper pools on the exposed side only. After 24 months the sheltered pools had become inundated with sediments, thus failing to function as rock pools as intended. Destructive sampling on the exposed side revealed significantly higher mean functional richness in lower than upper pools. However, a surprisingly high number of taxa colonised the upper pools leading to no significant difference in mean taxon richness among shore heights. A high number of rare taxa in the lower pools led to total taxon richness being almost twice that of upper pools. These findings highlight that even when expected to fail concrete pools supported diverse assemblages, thus representing an affordable, replicable means of enhancing biodiversity on a variety of artificial structures.
KW - alpha diversity
KW - beta diversity
KW - ecological engineering
KW - habitat heterogeneity
KW - ocean sprawl
KW - reconciliation ecology
KW - restoration ecology
UR - http://www.scopus.com/inward/record.url?scp=84992045286&partnerID=8YFLogxK
U2 - 10.1088/1748-9326/11/9/094015
DO - 10.1088/1748-9326/11/9/094015
M3 - Article
SN - 1748-9318
VL - 11
JO - Environmental Research Letters
JF - Environmental Research Letters
IS - 9
M1 - 094015
ER -