TY - JOUR
T1 - Deep feature batch correction using ComBat for machine learning applications in computational pathology
AU - Murchan, Pierre
AU - Ó Broin, Pilib
AU - Baird, Anne Marie
AU - Sheils, Orla
AU - P Finn, Stephen
N1 - Publisher Copyright:
© 2024 The Authors
PY - 2024/12
Y1 - 2024/12
N2 - Background: Developing artificial intelligence (AI) models for digital pathology requires large datasets from multiple sources. However, without careful implementation, AI models risk learning confounding site-specific features in datasets instead of clinically relevant information, leading to overestimated performance, poor generalizability to real-world data, and potential misdiagnosis. Methods: Whole-slide images (WSIs) from The Cancer Genome Atlas (TCGA) colon (COAD), and stomach adenocarcinoma datasets were selected for inclusion in this study. Patch embeddings were obtained using three feature extraction models, followed by ComBat harmonization. Attention-based multiple instance learning models were trained to predict tissue-source site (TSS), as well as clinical and genetic attributes, using raw, Macenko normalized, and Combat-harmonized patch embeddings. Results: TSS prediction achieved high accuracy (AUROC > 0.95) with all three feature extraction models. ComBat harmonization significantly reduced the AUROC for TSS prediction, with mean AUROCs dropping to approximately 0.5 for most models, indicating successful mitigation of batch effects (e.g., CCL-ResNet50 in TCGA-COAD: Pre-ComBat AUROC = 0.960, Post-ComBat AUROC = 0.506, p < 0.001). Clinical attributes associated with TSS, such as race and treatment response, showed decreased predictability post-harmonization. Notably, the prediction of genetic features like MSI status remained robust after harmonization (e.g., MSI in TCGA-COAD: Pre-ComBat AUROC = 0.667, Post-ComBat AUROC = 0.669, p=0.952), indicating the preservation of true histological signals. Conclusion: ComBat harmonization of deep learning-derived histology features effectively reduces the risk of AI models learning confounding features in WSIs, ensuring more reliable performance estimates. This approach is promising for the integration of large-scale digital pathology datasets.
AB - Background: Developing artificial intelligence (AI) models for digital pathology requires large datasets from multiple sources. However, without careful implementation, AI models risk learning confounding site-specific features in datasets instead of clinically relevant information, leading to overestimated performance, poor generalizability to real-world data, and potential misdiagnosis. Methods: Whole-slide images (WSIs) from The Cancer Genome Atlas (TCGA) colon (COAD), and stomach adenocarcinoma datasets were selected for inclusion in this study. Patch embeddings were obtained using three feature extraction models, followed by ComBat harmonization. Attention-based multiple instance learning models were trained to predict tissue-source site (TSS), as well as clinical and genetic attributes, using raw, Macenko normalized, and Combat-harmonized patch embeddings. Results: TSS prediction achieved high accuracy (AUROC > 0.95) with all three feature extraction models. ComBat harmonization significantly reduced the AUROC for TSS prediction, with mean AUROCs dropping to approximately 0.5 for most models, indicating successful mitigation of batch effects (e.g., CCL-ResNet50 in TCGA-COAD: Pre-ComBat AUROC = 0.960, Post-ComBat AUROC = 0.506, p < 0.001). Clinical attributes associated with TSS, such as race and treatment response, showed decreased predictability post-harmonization. Notably, the prediction of genetic features like MSI status remained robust after harmonization (e.g., MSI in TCGA-COAD: Pre-ComBat AUROC = 0.667, Post-ComBat AUROC = 0.669, p=0.952), indicating the preservation of true histological signals. Conclusion: ComBat harmonization of deep learning-derived histology features effectively reduces the risk of AI models learning confounding features in WSIs, ensuring more reliable performance estimates. This approach is promising for the integration of large-scale digital pathology datasets.
KW - Artificial intelligence
KW - Batch effects
KW - Computational pathology
KW - Histopathology
KW - The Cancer Genome Atlas (TCGA)
UR - http://www.scopus.com/inward/record.url?scp=85204789596&partnerID=8YFLogxK
U2 - 10.1016/j.jpi.2024.100396
DO - 10.1016/j.jpi.2024.100396
M3 - Article
AN - SCOPUS:85204789596
SN - 2229-5089
VL - 15
JO - Journal of Pathology Informatics
JF - Journal of Pathology Informatics
M1 - 100396
ER -