CHONDROGENIC DIFFERENTIATION OF HUMAN BONE MARROW-DERIVED MESENCHYMAL STEM CELLS IN A SIMULATED OSTEOCHONDRAL ENVIRONMENT IS HYDROGEL DEPENDENT

Mary Murphy

Research output: Contribution to a Journal (Peer & Non Peer)Articlepeer-review

Abstract

Hydrogels pose interesting features for cartilage regeneration strategies, such as the option for injectability and in situ gelation resulting in optimal filling of defects. We aimed to study different hydrogels for their capability to support chondrogenesis of human bone marrow-derived mesenchymal stem cells (hBMSCs). hBMSCs were encapsulated in alginate, alginate with hyaluronic acid (alginate HA), fibrin or thermoresponsive HA grafted with poly(N-isopropyl acrylamide) side-chains (HA-pNIPAM). Glycosaminoglycan production and cartilage-related gene expression were significantly higher in hBMSC-alginate and hBMSC-fibrin constructs than in the other constructs. Supplementation of alginate with HA was not beneficial. hBMSC-alginate, hBMSC-fibrin and hBMSC-HA-pNIPAM constructs were placed in simulated defects in osteochondral biopsies and cultured in vitro for 28 d. Biopsies containing hBMSC-alginate and hBMSC-fibrin were implanted subcutaneously in nude mice for 12 weeks. hBMSC-alginate constructs had significantly higher cartilage-related gene expression after 28 d of culture as well as significantly more safranin-O positive repair tissue after 12 weeks in vivo than hBMSC-fibrin constructs. Although initial experiments with hBMSC-hydrogel constructs suggested comparable results of hBMSC-alginate, hBMSC-fibrin and hBMSC-HA-pNIPAM constructs, culture in the osteochondral biopsy model in vitro as well as in vivo revealed differences, suggests that chondrogenesis of hBMSCs in an osteochondral environment is hydrogel-dependent.
Original languageEnglish (Ireland)
Number of pages11
JournalEuropean Cells & Materials
Volume27
Publication statusPublished - 1 Jan 2014

Authors (Note for portal: view the doc link for the full list of authors)

  • Authors
  • de Vries-van Melle, ML;Tihaya, MS;Kops, N;Koevoet, WJLM;Murphy, JM;Verhaar, JAN;Alini, M;Eglin, D;van Osch, GJVM

Fingerprint

Dive into the research topics of 'CHONDROGENIC DIFFERENTIATION OF HUMAN BONE MARROW-DERIVED MESENCHYMAL STEM CELLS IN A SIMULATED OSTEOCHONDRAL ENVIRONMENT IS HYDROGEL DEPENDENT'. Together they form a unique fingerprint.

Cite this