TY - JOUR
T1 - Chimeric siRNA-DNA Surfactants for the Enhanced Delivery and Sustained Cytotoxicity of a Gold(III) Metallodrug
AU - Hartmann, Alyssa K.
AU - Gudipati, Saketh
AU - Pettenuzzo, Andrea
AU - Ronconi, Luca
AU - Rouge, Jessica L.
N1 - Publisher Copyright:
Copyright © 2020 American Chemical Society.
PY - 2020/4/15
Y1 - 2020/4/15
N2 - Using a recently developed nucleic acid delivery platform, we demonstrate the effective delivery of metallodrug [AuIIIBr2(SSC-Inp-OEt)] (AP228; Inp = isonipecotic moiety), a hydrophobic, low solubility gold complex cytotoxic to cancer cells. It is shown that AP228 is delivered more effectively into HeLa cells using micellular surfactant assemblies compared to that of a more polar derivative [AuIIIBr2(SSC-Inp-GlcN1)] (AP209; GlcN1 = (α,β)-d-glucosamino moiety). When AP228 is codelivered with siRNA targeting Bcl-2, a key regulator of apoptosis, the overall cytotoxic therapeutic effects of the drug are maximized. The optimized delivery and distribution of the compound is monitored by both fluorescence microscopy and inductively coupled plasma mass spectrometry. We show that codelivery of the AP228 and Bcl-2 targeting siRNA results in a substantial increase in drug efficacy, wherein the cytotoxic therapeutic effects of the drug are maximized, reducing the IC50 from 760 nM to 11 nM. This hybrid small molecule drug and therapeutic nucleic acid delivery vehicle is shown to enable both the improved solubility and uptake of the gold(III) metallodrugs and the delivery of chemically unmodified siRNA, resulting in enhanced cytotoxic effects.
AB - Using a recently developed nucleic acid delivery platform, we demonstrate the effective delivery of metallodrug [AuIIIBr2(SSC-Inp-OEt)] (AP228; Inp = isonipecotic moiety), a hydrophobic, low solubility gold complex cytotoxic to cancer cells. It is shown that AP228 is delivered more effectively into HeLa cells using micellular surfactant assemblies compared to that of a more polar derivative [AuIIIBr2(SSC-Inp-GlcN1)] (AP209; GlcN1 = (α,β)-d-glucosamino moiety). When AP228 is codelivered with siRNA targeting Bcl-2, a key regulator of apoptosis, the overall cytotoxic therapeutic effects of the drug are maximized. The optimized delivery and distribution of the compound is monitored by both fluorescence microscopy and inductively coupled plasma mass spectrometry. We show that codelivery of the AP228 and Bcl-2 targeting siRNA results in a substantial increase in drug efficacy, wherein the cytotoxic therapeutic effects of the drug are maximized, reducing the IC50 from 760 nM to 11 nM. This hybrid small molecule drug and therapeutic nucleic acid delivery vehicle is shown to enable both the improved solubility and uptake of the gold(III) metallodrugs and the delivery of chemically unmodified siRNA, resulting in enhanced cytotoxic effects.
UR - https://www.scopus.com/pages/publications/85081662501
U2 - 10.1021/acs.bioconjchem.0c00047
DO - 10.1021/acs.bioconjchem.0c00047
M3 - Article
SN - 1043-1802
VL - 31
SP - 1063
EP - 1069
JO - Bioconjugate Chemistry
JF - Bioconjugate Chemistry
IS - 4
ER -