Boundary layer preconditioners for finite-element discretizations of singularly perturbed reaction-diffusion problems

Research output: Contribution to a Journal (Peer & Non Peer)Articlepeer-review

3 Citations (Scopus)

Abstract

We consider the iterative solution of linear systems of equations arising from the discretization of singularly perturbed reaction-diffusion differential equations by finite-element methods on boundary-fitted meshes. The equations feature a perturbation parameter, which may be arbitrarily small, and correspondingly, their solutions feature layers: regions where the solution changes rapidly. Therefore, numerical solutions are computed on specially designed, highly anisotropic layer-adapted meshes. Usually, the resulting linear systems are ill-conditioned, and so, careful design of suitable preconditioners is necessary in order to solve them in a way that is robust, with respect to the perturbation parameter, and efficient. We propose a boundary layer preconditioner, in the style of that introduced by MacLachlan and Madden for a finite-difference method (MacLachlan and Madden, SIAM J. Sci. Comput. 35(5), A2225-A2254 2013). We prove the optimality of this preconditioner and establish a suitable stopping criterion for one-dimensional problems. Numerical results are presented which demonstrate that the ideas extend to problems in two dimensions.
Original languageEnglish (Ireland)
Number of pages30
JournalNumerical Algorithms
Volume79
DOIs
Publication statusPublished - 1 Sep 2018

Authors (Note for portal: view the doc link for the full list of authors)

  • Authors
  • Nhan, TA,MacLachlan, S,Madden, N

Fingerprint

Dive into the research topics of 'Boundary layer preconditioners for finite-element discretizations of singularly perturbed reaction-diffusion problems'. Together they form a unique fingerprint.

Cite this