TY - JOUR
T1 - Application of cmOCT and continuous wavelet transform analysis to the assessment of skin microcirculation dynamics
AU - Smirni, Salvatore
AU - MacDonald, Michael P.
AU - Robertson, Catherine P.
AU - McNamara, Paul M.
AU - O'Gorman, Sean
AU - Leahy, Martin J.
AU - Khan, Faisel
N1 - Publisher Copyright:
© 2018 Society of Photo-Optical Instrumentation Engineers (SPIE).
PY - 2018/7/1
Y1 - 2018/7/1
N2 - Correlation mapping optical coherence tomography (cmOCT) is a powerful technique for the imaging of skin microvessels structure, based on the discrimination of the static and dynamic regions of the tissue. Although the suitability of cmOCT to visualize the microcirculation has been proved in humans and animal models, less evidence has been provided about its application to examine functional dynamics. Therefore, the goal of this research was validating the cmOCT method for the investigation into microvascular function and vasomotion. A spectral domain optical coherence tomography (SD-OCT) device was employed to image 90 sequential three-dimensional (3-D) OCT volumes from the forearm of 12 volunteers during a 25-min postocclusive reactive hyperemia (PORH) test. The volumes were processed using cmOCT to generate blood flow maps at selected cutaneous depths. The maps clearly trace flow variations during the PORH response for both capillaries and arterioles/venules microvascular layers. Continuous blood flow signals were reconstructed from cmOCT maps to study vasomotion by applying wavelet transform spectral analysis, which revealed fluctuations of flow during PORH, reflecting the regulation of microvascular tone mediated by endothelial cells and sympathetic nerves. The results clearly demonstrate that cmOCT allows the generation of functional information that may be used for diagnostic applications.
AB - Correlation mapping optical coherence tomography (cmOCT) is a powerful technique for the imaging of skin microvessels structure, based on the discrimination of the static and dynamic regions of the tissue. Although the suitability of cmOCT to visualize the microcirculation has been proved in humans and animal models, less evidence has been provided about its application to examine functional dynamics. Therefore, the goal of this research was validating the cmOCT method for the investigation into microvascular function and vasomotion. A spectral domain optical coherence tomography (SD-OCT) device was employed to image 90 sequential three-dimensional (3-D) OCT volumes from the forearm of 12 volunteers during a 25-min postocclusive reactive hyperemia (PORH) test. The volumes were processed using cmOCT to generate blood flow maps at selected cutaneous depths. The maps clearly trace flow variations during the PORH response for both capillaries and arterioles/venules microvascular layers. Continuous blood flow signals were reconstructed from cmOCT maps to study vasomotion by applying wavelet transform spectral analysis, which revealed fluctuations of flow during PORH, reflecting the regulation of microvascular tone mediated by endothelial cells and sympathetic nerves. The results clearly demonstrate that cmOCT allows the generation of functional information that may be used for diagnostic applications.
KW - correlation mapping optical coherence tomography
KW - nonlinear dynamics
KW - skin microvascular function
KW - vasomotion
KW - wavelet transform
UR - http://www.scopus.com/inward/record.url?scp=85050026254&partnerID=8YFLogxK
U2 - 10.1117/1.JBO.23.7.076006
DO - 10.1117/1.JBO.23.7.076006
M3 - Article
SN - 1083-3668
VL - 23
JO - Journal of Biomedical Optics
JF - Journal of Biomedical Optics
IS - 7
M1 - 076006
ER -