Abstract
Preserving the function of human tendon-derived cells (hTDCs) during cell expansion is a significant challenge in regenerative medicine. In this study, a non-genetic approach is introduced to control the differentiation of hTDCs using a newly developed tympanic bioreactor. The system mimics the functionality of the human tympanic membrane, employing a piezoelectrically tuned acoustic diaphragm made of polyvinylidene fluoride-co-trifluoroethylene and boron nitride nanotubes. The diaphragm is vibrationally actuated to deliver targeted electromechanical stimulation to hTDCs. The results demonstrate that the system effectively maintains the tendon-specific phenotype of hTDCs, even under conditions that typically induce nonspecific differentiation, such as osteogenesis. This stabilization is achieved by modulating integrin-mediated mechanosignaling via ion channel-regulated calcium activity, potentially by TREK-1 and PIEZO1, yet targeted studies are required for confirmation. Finally, the system sustains the activation of key differentiation pathways (bone morphogenetic protein, BMP) while downregulating osteogenesis-associated (mitogen-ctivated protein kinase, MAPK and wingless integrated, WNT) pathways and upregulating Focal Adhesion Kinase (FAK) signaling. This approach offers a finely tunable, dose-dependent control over hTDC differentiation, presenting significant potential for non-genetic approaches in cell therapy, tendon tissue engineering, and the regeneration of other mechanosensitive tissues.Preserving the function of human tendon-derived cells (hTDCs) during cell expansion is a significant challenge in regenerative medicine. In this study, a non-genetic approach is introduced to control the differentiation of hTDCs using a newly developed tympanic bioreactor. The system mimics the functionality of the human tympanic membrane, employing a piezoelectrically tuned acoustic diaphragm made of polyvinylidene fluoride-co-trifluoroethylene and boron nitride nanotubes. The diaphragm is vibrationally actuated to deliver targeted electromechanical stimulation to hTDCs. The results demonstrate that the system effectively maintains the tendon-specific phenotype of hTDCs, even under conditions that typically induce nonspecific differentiation, such as osteogenesis. This stabilization is achieved by modulating integrin-mediated mechanosignaling via ion channel-regulated calcium activity, potentially by TREK-1 and PIEZO1, yet targeted studies are required for confirmation. Finally, the system sustains the activation of key differentiation pathways (bone morphogenetic protein, BMP) while downregulating osteogenesis-associated (mitogen-ctivated protein kinase, MAPK and wingless integrated, WNT) pathways and upregulating Focal Adhesion Kinase (FAK) signaling. This approach offers a finely tunable, dose-dependent control over hTDC differentiation, presenting significant potential for non-genetic approaches in cell therapy, tendon tissue engineering, and the regeneration of other mechanosensitive tissues.
| Original language | English (Ireland) |
|---|---|
| Journal | Adv Sci (Weinh)Adv Sci (Weinh) |
| Volume | 11 |
| Issue number | 4545 |
| Publication status | Published - 1 Dec 2024 |
Authors (Note for portal: view the doc link for the full list of authors)
- Authors
- Fernandez-Yague, M. A.,Palma, M.,Tofail, S. A. M.,Duffy, M.,Quinlan, L. R.,Dalby, M. J.,Pandit, A.,Biggs, M. J.