TY - GEN
T1 - A Meta-Learning Approach for Multi-Objective Reinforcement Learning in Sustainable Home Energy Management
AU - Lu, Junlin
AU - Mannion, Patrick
AU - Mason, Karl
N1 - Publisher Copyright:
© 2024 The Authors.
PY - 2024/10/16
Y1 - 2024/10/16
N2 - Effective residential appliance scheduling is crucial for sustainable living. While multi-objective reinforcement learning (MORL) has proven effective in balancing user preferences in appliance scheduling, traditional MORL struggles with limited data in non-stationary residential settings characterized by renewable generation variations. Significant context shifts in the environment can invalidate previously learned policies. To address this, we extend state-of-the-art MORL algorithms with the meta-learning paradigm, enabling rapid, few-shot adaptation to shifting contexts. Additionally, we employ an auto-encoder (AE)-based unsupervised method to detect shifts in environmental context. We have also developed a residential energy environment to evaluate our method using real-world data from London residential settings. This study not only assesses the application of MORL in residential appliance scheduling but also underscores the effectiveness of meta-learning in energy management. Our top-performing method significantly surpasses the best baseline, while the trained model saves 3.28% on electricity bills, a 2.74% increase in user comfort, and a 5.9% improvement in expected utility. Additionally, it reduces the sparsity of solutions by 62.44%. Remarkably, these gains were accomplished using 96.71% less training data and 61.1% fewer training steps.
AB - Effective residential appliance scheduling is crucial for sustainable living. While multi-objective reinforcement learning (MORL) has proven effective in balancing user preferences in appliance scheduling, traditional MORL struggles with limited data in non-stationary residential settings characterized by renewable generation variations. Significant context shifts in the environment can invalidate previously learned policies. To address this, we extend state-of-the-art MORL algorithms with the meta-learning paradigm, enabling rapid, few-shot adaptation to shifting contexts. Additionally, we employ an auto-encoder (AE)-based unsupervised method to detect shifts in environmental context. We have also developed a residential energy environment to evaluate our method using real-world data from London residential settings. This study not only assesses the application of MORL in residential appliance scheduling but also underscores the effectiveness of meta-learning in energy management. Our top-performing method significantly surpasses the best baseline, while the trained model saves 3.28% on electricity bills, a 2.74% increase in user comfort, and a 5.9% improvement in expected utility. Additionally, it reduces the sparsity of solutions by 62.44%. Remarkably, these gains were accomplished using 96.71% less training data and 61.1% fewer training steps.
UR - http://www.scopus.com/inward/record.url?scp=85216701911&partnerID=8YFLogxK
U2 - 10.3233/FAIA240817
DO - 10.3233/FAIA240817
M3 - Conference Publication
AN - SCOPUS:85216701911
T3 - Frontiers in Artificial Intelligence and Applications
SP - 2814
EP - 2821
BT - ECAI 2024 - 27th European Conference on Artificial Intelligence, Including 13th Conference on Prestigious Applications of Intelligent Systems, PAIS 2024, Proceedings
A2 - Endriss, Ulle
A2 - Melo, Francisco S.
A2 - Bach, Kerstin
A2 - Bugarin-Diz, Alberto
A2 - Alonso-Moral, Jose M.
A2 - Barro, Senen
A2 - Heintz, Fredrik
PB - IOS Press BV
T2 - 27th European Conference on Artificial Intelligence, ECAI 2024
Y2 - 19 October 2024 through 24 October 2024
ER -