A federated learning approach to network intrusion detection using residual networks in industrial IoT networks

Nisha Chaurasia, Munna Ram, Priyanka Verma, Nakul Mehta, Nitesh Bharot

    Research output: Contribution to a Journal (Peer & Non Peer)Articlepeer-review

    5 Citations (Scopus)

    Abstract

    This paper introduces a sophisticated approach to network security, with a primary emphasis on utilizing deep learning for intrusion detection. In real-world scenarios, the high dimensionality of training data poses challenges for simple deep learning models and can lead to vanishing gradient issues with complex neural networks. Additionally, uploading network traffic data to a central server for training raises privacy concerns. To tackle these issues, the paper introduces a Residual Network (ResNet)-based deep learning model trained using a federated learning approach. The ResNet effectively tackles the vanishing gradient problem, while federated learning enables multiple Internet Service Providers (ISPs) or clients to engage in joint training without sharing their data with third parties. This approach enhances accuracy through collaborative learning while maintaining privacy. Experimental results on the X-IIoTID dataset indicate that the proposed model outperforms conventional deep learning and machine learning methods in terms of accuracy and other metrics used for evaluation. Specifically, the proposed methodology achieved 99.43% accuracy in a centralized environment and 99.16% accuracy in a federated environment.

    Original languageEnglish
    Pages (from-to)18325-18346
    Number of pages22
    JournalJournal of Supercomputing
    Volume80
    Issue number13
    DOIs
    Publication statusPublished - Sep 2024

    Keywords

    • Deep learning
    • Industrial IoT
    • Industry 4.0
    • Intrusion detection (IDS)
    • ML
    • Residual networks

    Fingerprint

    Dive into the research topics of 'A federated learning approach to network intrusion detection using residual networks in industrial IoT networks'. Together they form a unique fingerprint.

    Cite this