3D-Printed Photoelectrochemical Cell and its Application in Evaluation of Bismuth Vanadate Photoanodes: Synthesis, cell design and testing

G. Kumaravel Dinesh, Paolo Dessì, Wenming Tong, Roberto González-Gómez, Pau Farràs

Research output: Contribution to a Journal (Peer & Non Peer)Articlepeer-review

1 Citation (Scopus)

Abstract

Bismuth vanadate (BiVO4) is proven to be a promising photocatalyst for water splitting. However,theeffectofmaterialssyntheses,electrode preparation and size of photoelectrode on the photocurrent output of BiVO4 photoanodes needs further investigations. In this study, three different BiVO4 nanoparticle synthesis were employed, namely hydrothermal (HT), HT in the presence of ethylene glycol (EG) and HT with the addition of hydrazine hydrate (HH). In addition, two molecular inks (Triton-X and ethyl-methyl-imidazole, EMI), were compared for the preparation of BiVO4 photoanodes using a simple doctor-blade technique followed by calcination at 450°C. The photoanodes (9 cm2 active surface) were then compared for their photocurrent density at AM1.5G illumination and 1.2 V (vs. standard hydrogen electrode (SHE)) bias in a specifically designed, three-dimensional (3D)-printed electrochemical cell. The highest photocurrent 0.13 ± 0.1 mA cm–2 was obtained with the EMI ink, whereas tenfold lower photocurrent was obtained with Triton-X due to the higher charge transfer resistance, measured by electric impedance spectroscopy (EIS). The photoresponse was reproducible and relatively stable, with only 8% decrease in five consecutive illumination periods of 1 min.

Original languageEnglish
Pages (from-to)386-392
Number of pages7
JournalJohnson Matthey Technology Review
Volume66
Issue number4
DOIs
Publication statusPublished - 3 Oct 2022

Fingerprint

Dive into the research topics of '3D-Printed Photoelectrochemical Cell and its Application in Evaluation of Bismuth Vanadate Photoanodes: Synthesis, cell design and testing'. Together they form a unique fingerprint.

Cite this