2D/3D buccal epithelial cell self-assembling as a tool for cell phenotype maintenance and fabrication of multilayered epithelial linings in vitro

I. M. Zurina, A. I. Shpichka, I. N. Saburina, N. V. Kosheleva, A. A. Gorkun, E. A. Grebenik, D. S. Kuznetsova, D. Zhang, Y. A. Rochev, D. V. Butnaru, T. M. Zharikova, E. V. Istranova, Y. Zhang, L. P. Istranov, P. S. Timashev

Research output: Contribution to a Journal (Peer & Non Peer)Articlepeer-review

28 Citations (Scopus)

Abstract

Maintaining the epithelial status of cells in vitro and fabrication of a multilayered epithelial lining is one of the key problems in the therapy using cell technologies. When cultured in a monolayer, epithelial cells change their phenotype from epithelial to epithelial-mesenchymal or mesenchymal that makes it difficult to obtain a sufficient number of cells in a 2D culture and to use them in tissue engineering. Here, using buccal epithelial cells from the oral mucosa, we developed a novel approach to recover and maintain the stable cell phenotype and form a multilayered epithelial lining in vitro via the 2D/3D cell self-assembling. Transitioning the cells from the monolayer to non-adhesive 3D culture conditions led to formation of self-assembling spheroids, with restoration of their epithelial characteristics after epithelial-mesenchymal transition. In 7 days, the cells within spheroids restored the apical-basal polarity, and the formation of both tight (ZO1) and adherent (E-cadherin) intercellular junctions was shown. Thus, culturing buccal epithelial cells in a 3D system allowed us to recover and durably maintain the morphological and functional characteristics of epithelial cells. The multilayered epithelial lining formation was achieved after placing spheroids for 7 days onto a hybrid matrix, which consisted of collagen layers and reinforcing poly (lactide-co-glycolide) fibers and was proven promising for replacement of the urothelium. Thus, we offer an effective technique of forming multilayered epithelial linings on carrier-matrices using cell spheroids that was not previously described elsewhere and can find a wide range of applications in tissue engineering, replacement surgery, and regenerative medicine.

Original languageEnglish
Article number054104
JournalBiomedical Materials (Bristol)
Volume13
Issue number5
DOIs
Publication statusPublished - 18 Jul 2018

Keywords

  • 2D/3D self-assembling
  • 3D culture
  • buccal epithelial cells
  • buccal mucosa
  • cell spheroids
  • multilayered epithelial lining
  • tissue engineered urethra

Fingerprint

Dive into the research topics of '2D/3D buccal epithelial cell self-assembling as a tool for cell phenotype maintenance and fabrication of multilayered epithelial linings in vitro'. Together they form a unique fingerprint.

Cite this